Prima Digital Milling Tools

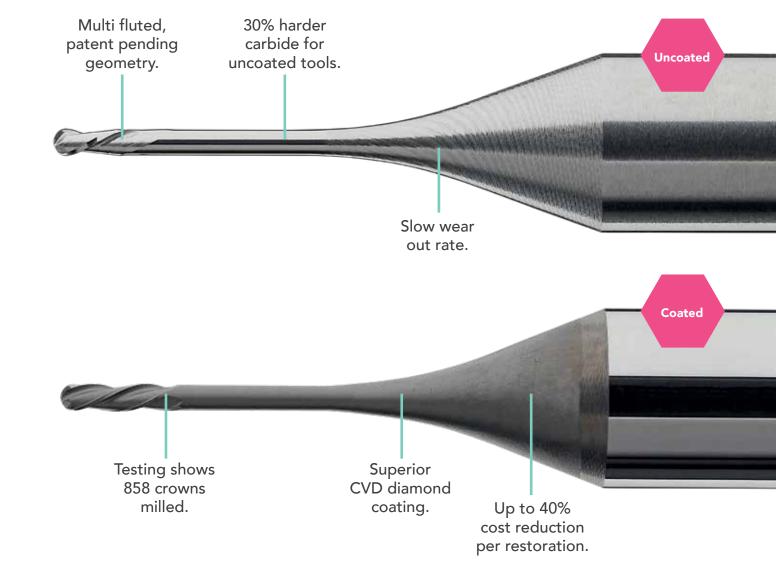
The forgotten step in your digital workflow

Prima Digital The Tool Of Choice

Prima Digital designs and engineers coated and uncoated milling tools for digital dental labs around the world.

Our patent-pending tool range, designed and engineered specially for Zirconia, outperforms the market leaders - making them the tools of choice for the industry's most renowned CAD/CAM dental milling machines; including Roland, Wieland, Armann Girrbach and vhf.

Our tools,
designed
specifically for
each machine type,
boast a patent pending,
multi flute design
which offers a more
efficient milling
process.



Prima Digital The Tool Of Choice

Quality is assured thanks to a robust testing and independent verification process, working with a leading UK Dental University.

Prima Digital, part of the world's fastest growing dental bur manufacturer. Prima Dental Group.

Prima Digital **£1 million of Investment and Development**

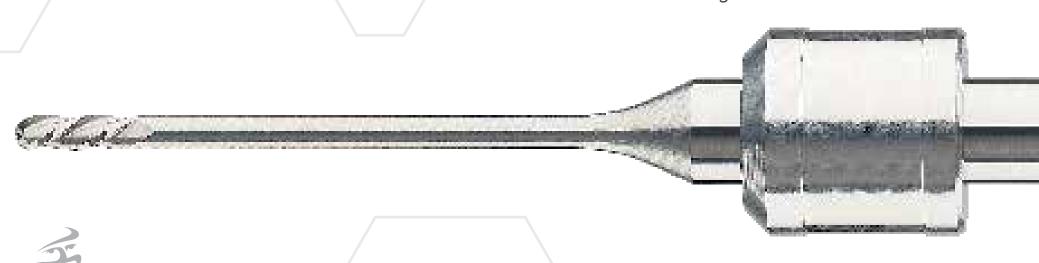
Dr. Marilyn Goh Head of Research & Innovation

Dr. Marilyn Goh is the world's foremost leading expert in the field of Carbide and tooling design.

PRIMA DIGITAL

She has a **PhD** in The Application of Artificial Intelligence in Manufacturing Control.

She has over **15 years** of experience working with internationally recognized companies including Sandvik, Airbus, and leading universities.


Dr. Marilyn Goh is published in over 12 international papers and is the principle inventor of 3 patents on cutting tools.

Prima Digital **£1 million of Investment and Development**

Two years of research, innovation and development; £1 million of investment;

the reassignment of Prima Dental expert engineers and the appointment of Carbide Tool Expert Dr Marilyn Goh (PhD) has resulted in a **product and service that outperforms the market leaders**. This is the journey that we have taken, and will repeat as we bring more milling tools to market.

- understand the marketplace
- understand the value Prima can bring, partner with experts
- evaluate carbide substrates
- develop unique tool geometry
- analyse tool coatings
- interrogate all findings
- manufacture to high precision
- listen to the market and grow

Prima Digital

Independent Research from a Leading UK University

This independent report shows Prima Digital tools are more precise and more consistent than the market leader.

1.0 Aim of the study

To evaluate the quality of milled crowns using topography analysis. Crowns from a Digital Model were milled using three set of tools Ø2mm, Ø1mm, Ø0.6mm made by three manufacturers. Volumes of the Outer Surface and the Inner Surface of milled crowns were measured and compared with the Digital Model.

2.0 Results - The Outer Surface

Fig. 1 – Outer Surface of the Digital Model

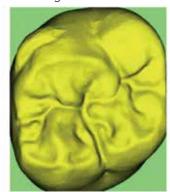


Fig. 3 – Scan of Competitor 1 milled Crown

Fig. 2 – Scan of Prima Digital milled Crown

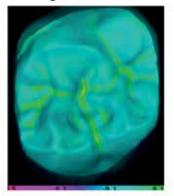
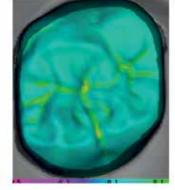



Fig. 4 – Scan of Competitor 2 milled Crown

This table summarises the results for the Outer Surface. Prima tools have been found to generate the least deviation from the digital model.

	Outer Surface	Mean Volume Deviation (mm³)	Total Volume Deviation (mm³)	Observations			
tal	Disc 1	0.067		Deviation of milled crown volume to the Digital Model remains consistent throughout			
Prima Digital	Disc 4	0.06	0.01				
Pri	Disc 9	0.07		the life of the tools.			
Competitor 1	Disc 1	0.02		Deviation of milled crown volume to the Digital Model increases when tools wear out.			
	Disc 4	0.15	0.13				
	Disc 7	0.12					
Competitor 2	Disc 1	-0.14		Milled crown volume tends to be smaller than the Digital Model.			
	Disc 4	-0.12	0.16	Even though a small deviation of 0.02 is observed at Disc			
	Disc 7	0.02		7, chipped margin at crowns will still cause crowns to be rejected.			

Prima Digital

Independent Research from a Leading UK University

This independent report shows Prima Digital tools are more precise and more consistent than the market leader.

> findings of a leading **UK University of Medicine and Dentistry's** independent testing the Prima Digital tool set has proven to mill a more accurate restoration when compared to competitor tools used in this test." Dr Marilyn Goh (Phd)

"Based on the

3.0 Results - The Inner Surface

Fig. 5 - Inner Surface of the Digital Model

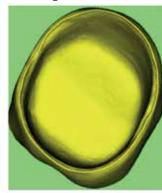
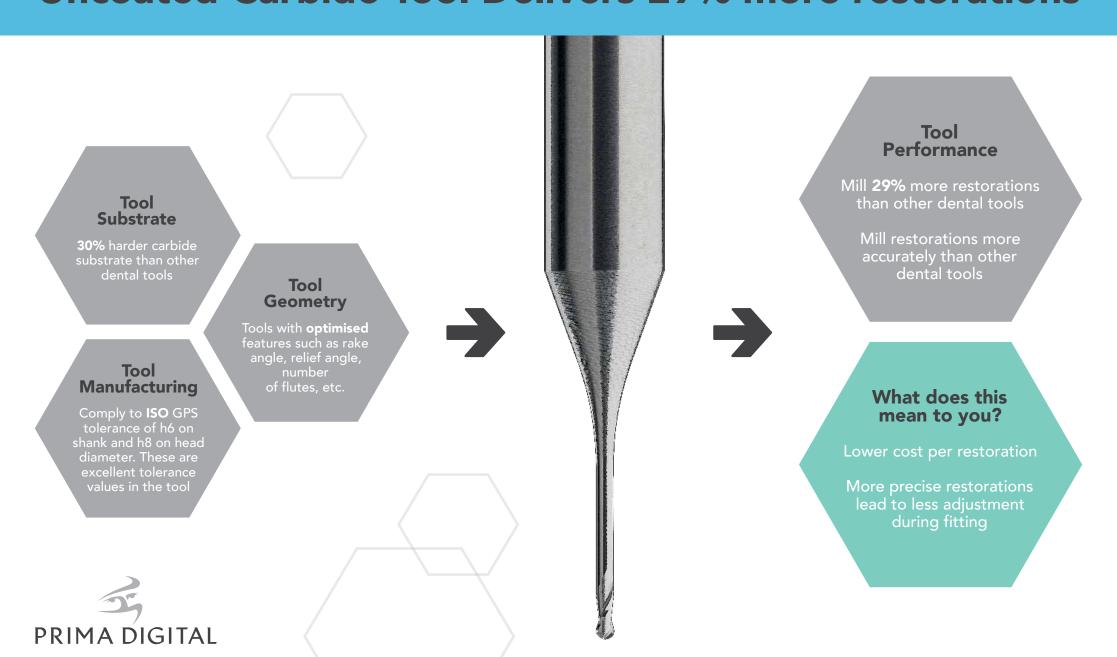


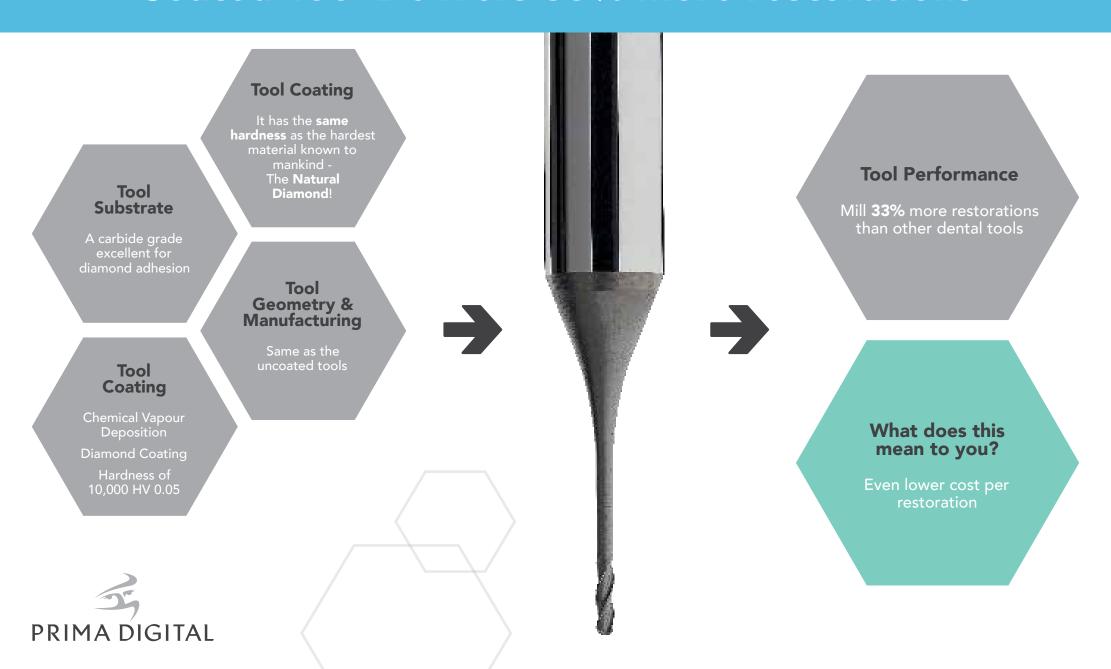
Fig. 7 – Scan of Competitor 1 milled Crown

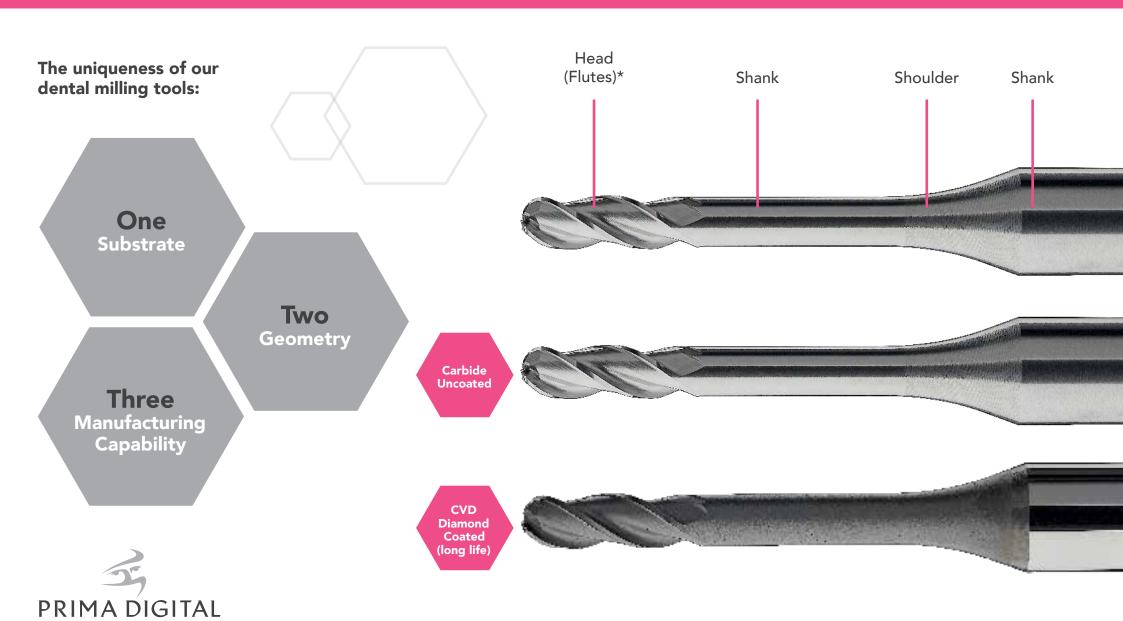
Fig. 6 – Scan of Prima Digital milled Crown

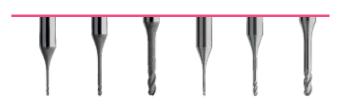
Fig. 8 – Scan of Competitor 2 milled Crown

This table summarises the results for the Inner Surface. Prima tools have been found to generate the least deviation from the digital model


	deviation from the digital model.								
		Inner Surface Mean Volume Deviation (mm³)		Total Volume Deviation (mm³)	Observations				
	ital	Disc 1	-0.19		Deviation of milled crown volume to the Digital Model increases as tools wear out. But total deviation value is the smallest among all tools.				
	Prima Digital	Disc 4	0.05	0.3					
		Disc 9	0.11						
	r 1	Disc 1	Disc 1 -0.24		Deviation of milled crown volume to the				
	Competitor 1	Disc 4	0.66	1.2	Digital Model increases as tools wear out. And, the total deviation value is the largest among all tools.				
		Disc 7	0.96						
	or 2	Disc 1	-0.82		The are to the country				
	Competitor 2	Disc 4	0.85	1.67	There is inconsistency in crown volume deviation from the Digital Model.				
	ဝိ	Disc 7	-0.04						


Prima tool set has proven to be able to produce a more accurate restoration as compared to tools used in this test.


Prima Digital Uncoated Carbide Tool Delivers 29% more restorations


Prima Digital Coated Tool Delivers 33% more restorations

Prima Digital Our Product Range

Prima Digital **Our Product Range**


Roland

Head Diameter	Ø0.6mm	Ø1mm	Ø2mm	Ø0.6mm	Ø1mm	Ø2mm
Finish	Coated	Coated	Coated	Uncoated	Uncoated	Uncoated
Shank Diameter	Ø4mm	Ø4mm	Ø4mm	Ø4mm	Ø4mm	Ø4mm
Head Length	7mm	10mm	15mm	7mm	10mm	15mm
Head and Neck Length	13mm	15.5mm	19.5mm	13mm 15.5mm		19.5mm
Overall Length	50mm	50mm	50mm	50mm	50mm	50mm

Head Diameter	Ø0.6mm	Ø1mm	Ø2mm	Ø0.6mm	Ø1mm	Ø2mm
Finish	Coated	Coated	Coated	Uncoated	Uncoated	Uncoated
Shank Diameter	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm
Head Length	3mm	16mm	16mm	3mm 16mm		16mm
Head and Neck Length	9.5mm	18mm	18mm	9.5mm	18mm	18mm
Overall Length	40mm	40mm	40mm	40mm	40mm	40mm

Amann Girrbach

Head Diameter	Ø0.6mm	Ø0.7mm	Ø1mm	Ø2.5mm	Ø0.6mm	Ø0.7mm	Ø1mm	Ø2.5mm
Finish	Coated	Coated	Coated	Coated	Uncoated	Uncoated	Uncoated	Uncoated
Shank Diameter	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm	Ø3mm
Head Length	3mm	3mm	16mm	20mm	3mm	3mm	16mm	20mm
Head and Neck Length	9.5mm	9.5mm	18mm	20.75mm	9.5mm	9.5mm	18mm	20.75mm
Overall Length	40mm	40mm	40mm	40mm	40mm	40mm	40mm	40mm

Ringstop (Amann Girrbach)

Prima Digital Don't just take our word for it...

"Showing zero sign of chipping at thin margins... which is awesome!"

US Lab

"Normally we would be changing burs more regularly... maybe every two weeks... we're approaching a month on these now!"

US Milling Centre

"These are definitely better than the ones we buy from [Competitor]."

US Milling Centre

"The surface texture looks better too."

US Milling Centre

"Uncoated tooling outperforms some coated tooling on the market"

> Ryan Faufau Director of Research & Digital Technology

Prima Digital The forgotten step in your digital workflow

Would you like a specialist visit to learn more?

E sales@primadigital.com

